explore your mathematics skills, ability, and extend your mathematics comprehensions
Wednesday, July 15, 2009
ANIMASI PEMBELAJARAN MATEMATIKA DENGAN MATERI PERSAMAAN EKSPONEN
Monday, June 1, 2009
SIAPA MENYUSUL MOHAMED ALTOUMAIMI?
Pembaca sekalian, …..beberapa hari yang lalu penulis sempat berkelana ke dunia maya, internet, dan sempat singgah ke sebuah situs. Penulis terperanga setelah membaca tulisan yang dimuat di situs tersebut. Dikatakan dalam tulisan tersebut bahwa di Swedia terdapat seorang anak murid sebuah Sekolah Menengah Atas yang mengukir sejarah besar di abad ini. Betapa tidak,......seorang anak yang masih duduk di bangku sekolah Sekolah Menengah Atas menemukan rumus untuk menjelaskan dan menyederhanakan bilangan Bernoulli, suatu barisan penghitungan yang ditemukan oleh seorang matematikawan berkebangsaan Swiss, Jacob Bernoulli, pada abad ke-17. Murid tersebut bernama Mohamed Altoumaimi, seorang imigran dari Iraq enam tahun yang lalu. Hebatnya lagi, Altoumaimi menemukan rumus tersebut hanya dalam waktu empat bulan. Pembaca bisa membayangkan, sungguh luar biasa seorang anak murid Sekolah Menengah Atas yang baru berusia 16 tahun bisa memecahkan teka-teki matematika yang telah mematahkan keahlian para ahli selama lebih dari 300 tahun, hanya dalam waktu empat bulan.
Kemudian Altoumaimi menemui salah seorang profesor pada Universitas Uppsala, salah satu perguruan tinggi top di Swedia, untuk mengecekkan hasil temuannya setelah sebelumnya dia melaporkan temuannya kepada guru di sekolahnya dan gurunya tidak yakin terhadap temuannya. Dan hasilnya, sang profesor menyatakan bahwa temuannya sungguh-sungguh benar, dan menawarkan kepada Altoumaimi untuk bergabung di Universitas Uppsala. Kapan anak-anak Indonesia, khususnya anak-anak siswa/mantan siswa SMPN 1 Ponorogo segera menyusul jejak Mohamed Altoumaimi?
Friday, May 29, 2009
ANIMATION OF SOLVING THE LINEAR EQUATION WITH TWO VARIABLES BY MATRIX DETERMINANT METHOD
Well....., there's a method behind the two methods ordinarily known for solving the problem above, called: Linear Equation with Two Variables (LETV). But, as mathematics teachers, by using Linear Equation with Two Variables (LETV), how can we present our materials so that our students will be fully interested in the learning?
Actually, we can use an animation for delivering the materials so that, as we hope, the students will be interested on the presentation and the learning will be meaningful.
Here, I'd like to share an animation for solving the Linear Equation with Two Variables (LETV) by Determinant method, especially for the mathematic teachers who would like to improve their learning. It can be downloaded by free download. If you would like to download this file, please click here.
Tuesday, April 28, 2009
JAWABAN SOAL PEMBUKTIAN PERSEGI YANG DIKONSTRUKSIKAN DARI JAJAR GENJANG
Sunday, April 26, 2009
PENGGUNAAN ANIMASI FLASH DALAM MATERI TRIGONOMETRI
Monday, March 16, 2009
Anda suka tantangan?
Kalian tentu sudah mengenal bangun jajargenjang, dan persegi.
Nah....kalau kalian ingin memperkuat ketrampilan dalam membuktikan segiempat-segiempat yang merupakan persegi, di sinilah tempatnya.
Perhatikanlah jajargenjang ABCD berikut.
Kemudian gambarlah persegi-persegi ABGH, ADJI, CDKL, dan BCEF. Tentukan titik-titik pusat dari tiap persegi tadi, yaitu titik potong dari kedua diagonalnya, dan namailah titik pusat itu dengan P, Q, R, dan S seperti pada gambar berikut.
Buktikan bahwa PQRS adalah bangun persegi!
Catatan:
Gunakan konsep-konsep
- Kekongruenan segitiga
- Sudut-sudut yang saling bersuplemen
- Belah ketupat
Sunday, March 15, 2009
Will you be interested on this more number patterns?
A few days ago, I have posted the surprising number patterns on this site. I still have some number patterns which we are able to be interested on it.
76,923 . 1 = 076,923
76,923 . 10 = 769,230
76,923 . 9 = 692,307
76,923 . 12 = 923,076
76,923 . 3 = 230,769
76,923 . 4 = 307,692
76,923 . 2 = 153,846
76,923 . 7 = 538,461
76,923 . 5 = 384,615
76,923 . 11 = 846,153
76,923 . 6 = 461,538
76,923 . 8 = 615,384
Another peculiar number is 142,857. When it is multiplied by the numbers 2 through 8, the results are astonishing. Consider the following products and describe the peculiarity.
142,857 . 2 = 285,714
142,857 . 3 = 428,571
142,857 . 4 = 571,428
142,857 . 5 = 714,285
142,857 . 6 = 857,142
Now look at the product, 142,857 . 7 = 999,999. Surprised?
It gets even stranger with the product, 142,857 . 8 = 1,142,856. If we remove the millions digit and add it to the units digit, the original number is formed.
Tuesday, March 3, 2009
Surprising Number Patterns
What do you feel about mathematics? Do you think that mathematics is difficult? Why?
Meanwhile, maybe, some students say that mathematics is fun.
Well…..
I think we have to appreciate all the opinions. But, now, I will show that mathematics is fun. I have some amazing with mathematics. And I hope it will change all the frights to the full of fun.
Actually, there are times/multiplications when the charm of mathematics lies in the surprising nature of its number system. There are not many words needed to demonstrate this charm. It is obvious from the patterns attained.
Look, enjoy, and spread these amazing properties. Let you appreciate the patterns and, if possible, try to look for an “explanation” for this. Most important is that you can get an appreciation for the beauty in these number patterns.
1 · 1 = 1
11 · 11 = 121
111 · 111 = 12,321
1,111 · 1,111 = 1,234,321
11,111 · 11,111 = 123,454,321
111,111 · 111,111 = 12,345,654,321
1,111,111 · 1,111,111 = 1,234,567,654,321
11,111,111 · 11,111,111 = 123,456,787,654,321
111,111,111 · 111,111,111 = 12,345,678,987,654,321
1 · 8 + 1 = 9
12 · 8 + 2 = 98
123 · 8 + 3 = 987
1,234 · 8 + 4 = 9,876
12,345 · 8 + 5 = 98,765
123,456 · 8 + 6 = 987,654
1,234,567 · 8 + 7 = 9,876,543
12,345,678 · 8 + 8 = 98,765,432
123,456,789 · 8 + 9 = 987,654,321
Well…..
What do you say about the patterns above? I think it will be better if you would like to give some comments, ok?
Monday, March 2, 2009
Let's be the smart and challenger students
let, A = 1+2+3+4+5+6+7+8+........... (a)
Suppose we have
S = 1+1+1+1+1+1+1+1+1+.......... (b)
If the equations above are added together, then we get
(A+S) = 2+3+4+5+6+7+8+9+10+.......... (c)
But, if (c) is subtracted from (a), then;
A-(A+S) = (1+2+3+4+5+6+7+8+.....) - (2+3+4+5+6+7+8+9+.....)
S = 1
Now, let discuss the last equation that S = 1 or the sum of infinite terms of 1 is equal to 1.
So, what's wrong?
Send your idea.......we are fully waiting your attentions.